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The authors inform about recently developed mathematical fundamentals concerningthe

calculation of non-contacting gas lubricated face seals. They carried out extensive expe-

riments using three different designs at pressures up to 10 MPa and sliding velocities up

to 110 m/s. A comparison between the experimental results and the calculations indi-

cates that a stable operation without wear can be ensured in all cases, provided that the

materials and geometrical parameters of the seal have been properly chosen.

Introduction

Extreme operating conditions in gas process industry (high pressure, high surface velocity,

hazardous and toxic gases) require dry running seals of high reliability with low leakage

and minimal wear. Hence self-stabilizing face seals were developed, which are balanced

aerostatically and controlled aerodynamically when in operation (refs. 1-9). To achieve

a stable clearance between the rotating and the stationary face a self-acting geometry,

similar to a narrow aerodynamic thrust bearing, is incorporated into one of the seal faces

(ref. 10). As the shaft begins to rotate, the bearing generates a very thin gas film with

high stiffness and an opening force, which separates the seal faces. Usually the self-acting

geometry is located on the high pressure side.

The operational principle of such a self-stabilizing non-contacting face seal is illustrated

in fig. 1: Any deviation in gap width from the position of equilibrium (indez 1) causes

changes in the pressure profile, which determines the opening force. If gap width in-

creases (P), the aerodynamic opening force decreases and vice versa (3). This causes the

gap width to automatically return to its equilibrium position. At present three self-acting

surface patterns as shown in fig. 2 are used in industrial applications.

There has been a growing interest in these seals as components for process industry

and other ranges (turbo compressors, expansion and cooling turbines etc.) in the last

15 years, but nevertheless there have been a certain lack of design fundamentals until

recently. Therefore research projects were performed to obtain reliable, experimentally

verified fundamentals for the design and calculation of gas lubricated face seals used at

high p.v - values.
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Theoretical Fundamentals

The isothermal compressible fluid flow in a sealing/lubricating gap is described by

- the Navier- Stokes - equation,

- the equation of continuity and

- the equation of state (ideal gas)

with the boundary conditions and the simplifications commonly used in aerodynamic

lubrication theory being applied. The generalized Reynolds equation results from this

system of equations and is solved numerically to determine the pressure distribution in

the sealing gap as well as the static and dynamic characteristics of gas lubricated face

seals (ref. 11,12).

Turbulence in the lubricating film may occure at very high surface velocities and high

pressure differences. The effect of turbulence is represented by the two turbulence cor-

rection factors Ko and KR, which are based on empirically derived turbulence models

developed by Ng and Elrod as well as Constantinescu (ref. 13).

The generalized Reynolds differential equation is:

1 0 (ph 30p_ a (rph 30p) =6wrO(ph)+12rO_(Ph) (1)

with: p - pressure

h - gap width

7/- dynamic viscosity

p - density

w - angular velocity

O - angular cordinate
r - radial coordinate

t - time.

In solving the Reynolds equation numerically the mean film thickness and the pressures

at the boundaries are held constant in each iteration. The pressure distribution p(O, r, t)

is calculated whereby the stationary and transient contributions of the solution are com-

puted separately. A conservative Finite-Difference-Method is used because of the dis-

continuities in the gap between the stationary and the rotating seal ring.

The gap opening force given by the integration of the pressure distribution is iterated,

varying film thickness, until the equilibrium of opening and closing force is achieved

(ref. 14). The friction force FR is calculated by integrating the wall shear stress with re-

spect to the seal face. The leakage (mass ftow rh) results from the exit velocity times exit

area and density. The linearized stiffness and damping coefficients (ca, da) are determined

by applying the method of small perturbation to the Reynolds equation.

Additionally the commercial FEM-program ANSYS (ref. 15) is coupled to this flow ana-

lysis program to estimate the influence of seal deformations on the characteristics.

For the design of gas lubricated face seals the effect of pressure and speed on leakage

and gap width is of great importance. In the following the calculated characteristics of a

gas lubricated face seal with spiral grooves and high pressure on the outer diameter are

368



Non-Contacting Gas Lubricated Face Seals [or High p.v- Values

presented. In this example it is assumed that the gas flow in the sealing gap is laminar

and that the seal faces are parallel. The process medium is air.

The leakage of this spiral groove face seal shows nearly a linear increase with operating

pressure and speed, fig. 3a. As shown in fig. 3b, the sealing gap decreases slightly with

increasing pressure and increases with growing speed. At maximum operating pressure,

p_,,,,_ = 10 MPa, and max. speed, n,,,_ = 22000 rpm, the gap width is h = 2.5 #m. The

resulting leakage mass flow of th = 1.45 g/s is comparatively low. The seal is closed at

low pressure difference and n = 0.

During operation an angular misalignment of the rotating seal ring and an axial shaft

movement are always present. To provide good dynamic tracking ability between the sta-

tionary and the misaligned rotating ring the flexible support of the stationary ring in the

housing allows angular and axial movements. To ensure stable operation it is essential,

that the axial and angular stiffnesses of the gas film are very high and that the damping

of the film is positive. With the chosen spiral groove design these requirements are met

as shown in fig. 4.

Experimental Investigations

To verify the reliability of the developed design fundamentals series of comparative expe-

riments using different complete gas lubricated face seals were carried out. The tests were

performed with three seal designs at operating pressures pop up to 10 MPa and sliding

velocities v up to 110 m/s.

In fig. 5 the cross-section of the test rig is shown. The shaft is supported in ball bearings

additionally equipped with a squeeze film damper on the side of the sealing unit. The test

seals are arranged symmetrically to compensate the axial pressure force. Various sizes,

designs and materials were tested for the seal rings, as well as different pattern for the

self-acting structure and different balance ratio3.

Test seal A (John Crane) is patterned with spiral grooves. The stationary face is manu-

factured from carbon-graphite and the rotating seal ring (outer diameter 148 ram) from

tungsten carbide. The measured total leakage volume flow Vtot (fig. 6) increases very

strong with speed and operating pressure and coincides quite well with the calculated va-

lues. The measured total power consumption Ptot (fig. 7) varies progressively with speed

n and about linearly with pressure p; at a maximum speed of n_a_ = 16000 rpm and a

maximum pressure of p,,ax = 8 MPa it reaches a value of Ptot = 4 kW. This high power

consumption is due to highly turbulent flow at the surfaces of the rotating elements inside

the pressurized chamber.
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Test seal B (Pacific Wietz) uses a self-acting structure of symmetrical T-grooves. The

material of the stationary ring is silicon carbide filled with graphite and that of the rota-

ting ring is tungsten carbide (outer diameter 98 mm). The leakage characteristics (mass

flow rh ) of this seal (fig. 8a) are similar to those of seal A above, but the influence of speed

is very small. To measure gap width during operation the stationary and rotating ring

were modified. At the inner diameter of the stationary ring (atmospheric pressure side)

two capacitance probes were mounted. The measured gap width h (fig. 8b) ranges from

2#m to 3.5#m across the entire operating range. The intersection of the measured lines is

caused by deformations of the stationary ring. The results of calculation, which also takes

into account the deformation of the sealing rings, agree quite well with the measurements.

The self-acting structure of test seal C (Feodor Burgmann) consists of circular V- grooves,

which reach wedge shaped inwards (grooves depth is not constant). Here again the sta-

tionary ring is made of carbon and the rotating ring of silicon carbide (outer diameter

118 mm). As illustrated in fig. 9a the speed n very strongly influences the leakage 1)' due

to the high aerodynamic forces generated by the V-grooves. The effect of the operating

pressure on leakage is at first very strong for low pressures (p_ <4 MPa) and decreases

with higher pressures. The film thickness between the seal faces was measured by a ca-

pacitive probe. One of its electrodes was sputtered on the sealing face of the stationary

ring (Al203). With no pressure difference across the seal it runs like a gas lubricated aero-

dynamic thrust bearing. For increasing operational pressure the film thickness decreases,

fig. 9b. In operation the gap width h usually varies between the limits 2#m and 6#m.

Summary

In the investigated gas lubricated face seals a very narrow non-contacting sealing gap is

realized, which is self-stabilizing. The theoretical fundamentals for a reliable design and

optimization of the static and dynamic characteristics of these seals have been developed

and are presented here, as well as in other recent publications (refs. 14,16). The reliabil-

ity of the method for calculating the characteristics of non-contacting gas lubricated face

seals at high p.v-values has been verified by extensive comparative tests performed for

three seal designs at operation pressures up to 10 MPa and sliding velocities up to 110

m/s. If the materials and geometric parameters of the sealing rings and the self-stabilizing

patterns on the seal surface have been chosen properly, a non-contacting, stable and re-

liable operation without wear can be achieved.

Remarks

Some important problems of gas lubricated seals are not discussed here, for example:

choked flow, energy dissipation, entrance and exit losses etc. These topics are discussed

in other publications or else will be investigated in future projects.
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Figure 1: Design and operational principle of gas lubricated face seals
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spiral grooves T-grooves V-grooves

Figure 2: Self-acting geometries of gas lubricated face seals
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Figure 3: Calculated leakage mass flow rh(pop, n) and film thick-

ness h(pop, n) of a spiral groove face seal
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